If cosecθ=54, then find the value of (1+tanθ)(1−tanθ)(1+cotθ)(1−cotθ)
We know that, cot2θ= cosec2θ−1=[54]2−1=2516−1
⇒cot2θ=25−1616
⇒cot2θ=916
⇒cotθ=34=⇒tanθ=43
(1+tanθ)(1−tanθ)(1+cotθ)(1−cotθ)=[1+43][1−43][1+34][1−34]=[73][−13][74][14]=−79716=−169