wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosecθsinθ=a3 and secθcosθ=b3, prove that a2b2(a2+b2)=1.

Open in App
Solution

Given : cosecθsinθ=a3 and secθcosθ=b3

1sinθsinθ=a3

cos2θsinθ=a3

a=(cos2θsinθ)13

Similarly ; b=(sin2θcosθ)13

a2b2(a2+b2)=a4b2+a2b4

(cos2θsinθ)43(sin2θcosθ)23+(cos2θsinθ)23(sin2θcosθ)43

(cosθ)8/32/3.(sinθ)4/34/3+(sinθ)8/32/3.(cosθ)4/34/3

cos2θ+sin2θ=1

a2b2(a2+b2)=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Right Angled Triangle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon