If cosecθ−sinθ=a3 and secθ−cosθ=b3 then, the value of a2 b2 (a2+b2) is __________ .
Given: cosecθ−sinθ=a3 and secθ−cosθ=b3
⇒cosec θ−sin θ=a3
We know that, cosec θ=1sin θ.
a3=(1sinθ−sinθ)
a3=(1−sin2θsinθ)
a3=cos2θsinθ....(1) (∵1−sin2θ=cos2θ)
Given, b3=secθ−cosθ
We know that, sec θ=1cos θ.
b3=1cosθ−cosθ
b3=1−cos2θcosθ
b3=sin2θcosθ....(ii) (∵1−cos2θ=sin2θ)
From (i) and (ii),
a3×b3=cos2 θsin θ×sin2 θcos θ
By cancelling out the common terms, we get,
a3×b3=sin θ×cos θ and a3b3=cos3 θsin3 θ
Hence, ab=cos θsin θ
Now, multiply abab to a2 b2 (a2+b2) we get,
⇒a2b2×abab×(a2+b2)=a3b3(ab+ba)
Now substituting the values, we get
=sinθ×cosθ[cosθsinθ+sinθcosθ]
=(sinθ×cosθ×cosθsinθ)+(sinθ×cosθ×sinθcosθ)
=cos2θ+sin2θ=1....(∵sin2θ+cos2θ=1)