wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosecθsinθ=a3 and secθcosθ=b3 then, the value of a2 b2 (a2+b2) is __________ .

A
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
-1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
-2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 1

Given: cosecθsinθ=a3 and secθcosθ=b3

cosec θsin θ=a3
We know that, cosec θ=1sin θ.
a3=(1sinθsinθ)
a3=(1sin2θsinθ)

a3=cos2θsinθ....(1) (1sin2θ=cos2θ)

Given, b3=secθcosθ
We know that, sec θ=1cos θ.
b3=1cosθcosθ
b3=1cos2θcosθ

b3=sin2θcosθ....(ii) (1cos2θ=sin2θ)

From (i) and (ii),
a3×b3=cos2 θsin θ×sin2 θcos θ
By cancelling out the common terms, we get,
a3×b3=sin θ×cos θ and a3b3=cos3 θsin3 θ
Hence, ab=cos θsin θ

Now, multiply abab to a2 b2 (a2+b2) we get,

a2b2×abab×(a2+b2)=a3b3(ab+ba)

Now substituting the values, we get

=sinθ×cosθ[cosθsinθ+sinθcosθ]

=(sinθ×cosθ×cosθsinθ)+(sinθ×cosθ×sinθcosθ)

=cos2θ+sin2θ=1....(sin2θ+cos2θ=1)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identity- 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon