If cosecθ−sinθ=a3 and secθ−cosθ=b3, then a2b2(a2+b2)=
1
⇒cosecθ−sinθ=a3
a3=(1sinθ−sinθ)
a3=(1−sin2θsinθ)
a3=cos2θsinθ
(∵sin2θ+cos2θ=1)
⇒secθ−cosθ=b3
b3=secθ−cosθ
b3=1cosθ−cosθ
b3=1−cos2θcosθ
b3=sin2θcosθ
(∵sin2θ+cos2θ=1)
⟹a3×b3=cos2θsinθ×sin2θcosθ
⇒a3b3=sinθ.cosθ and a3b3=cos3θsin3θ
Hence, ab=cosθsinθ
Now, multiply abab to a2b2(a2+b2)
⇒a2b2(a2+b2)=a3b3(ab+ba)
Now substituting the values, we get
=sinθ.cosθ[cosθsinθ+sinθcosθ]
=(sinθ.cosθ×cosθsinθ)+(sinθcosθ×sinθ.cosθ)
=cos2θ+sin2θ
=1 (∵sin2θ+cos2θ=1)