wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosecθsinθ=a3 and secθcosθ=b3, then a2b2(a2+b2)=


A

1

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B

-1

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

2

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

None of these

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A

1


cosecθsinθ=a3
a3=(1sinθsinθ)
a3=(1sin2θsinθ)
a3=cos2θsinθ
(sin2θ+cos2θ=1)

secθcosθ=b3
b3=secθcosθ
b3=1cosθcosθ
b3=1cos2θcosθ
b3=sin2θcosθ
(sin2θ+cos2θ=1)

a3×b3=cos2θsinθ×sin2θcosθ

a3b3=sinθ.cosθ and a3b3=cos3θsin3θ

Hence, ab=cosθsinθ

Now, multiply abab to a2b2(a2+b2)

a2b2(a2+b2)=a3b3(ab+ba)

Now substituting the values, we get

=sinθ.cosθ[cosθsinθ+sinθcosθ]

=(sinθ.cosθ×cosθsinθ)+(sinθcosθ×sinθ.cosθ)

=cos2θ+sin2θ

=1 (sin2θ+cos2θ=1)


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identity- 3
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon