1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Trigonometric Ratios
If cosecθ -...
Question
If
c
o
s
e
c
θ
−
s
i
n
θ
=
a
3
a
n
d
sec
θ
−
c
o
s
θ
=
b
3
,
prove that
a
2
b
2
(
a
2
+
b
2
)
=
1
Open in App
Solution
Consider
c
o
s
e
c
θ
−
sin
θ
=
a
3
1
sin
θ
−
sin
θ
=
a
3
1
−
sin
2
θ
sin
θ
=
a
3
cos
2
θ
sin
θ
=
a
3
………
(
1
)
(
cos
2
θ
sin
θ
)
2
3
=
(
a
3
)
3
2
cos
4
3
θ
sin
3
2
θ
=
a
2
…….
(
2
)
Now consider
sec
θ
−
cos
θ
=
b
3
1
cos
θ
−
cos
θ
=
b
3
1
−
cos
2
θ
cos
θ
=
b
3
sin
2
θ
cos
θ
=
b
3
…….
(
3
)
(
sin
2
θ
cos
θ
)
2
3
=
(
b
3
)
2
2
sin
4
2
θ
cos
2
2
θ
=
b
2
……
(
4
)
Multiply
(
2
)
&
(
4
)
we get
cos
4
2
θ
sin
2
2
θ
×
sin
4
2
θ
cos
2
2
θ
=
a
2
×
b
2
sin
2
2
θ
cos
2
2
θ
=
a
2
b
2
……
(
5
)
a
2
+
b
2
=
cos
4
2
θ
sin
2
2
θ
+
sin
4
2
θ
cos
4
2
θ
=
cos
2
θ
+
sin
2
θ
sin
2
3
θ
+
cos
2
3
θ
=
1
sin
2
3
θ
cos
2
3
θ
Consider
a
2
b
2
(
a
2
+
b
2
)
=
sin
2
2
θ
cos
2
3
θ
×
1
sin
2
2
θ
cos
2
2
θ
=
1
.
Suggest Corrections
0
Similar questions
Q.
If
csc
θ
−
sin
θ
=
a
3
,
sec
θ
−
cos
θ
=
b
3
P.T
a
2
b
2
(
a
2
+
b
2
)
=
1
Q.
Prove the following trigonometric identities.
If cosec θ − sin θ = a
3
, sec θ − cos θ = b
3
, prove that a
2
b
2
(a
2
+ b
2
) = 1