wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosecθsinθ=a3andsecθcosθ=b3, prove that a2b2(a2+b2)=1

Open in App
Solution

Consider cosecθsinθ=a3
1sinθsinθ=a3
1sin2θsinθ=a3
cos2θsinθ=a3 ………(1)
(cos2θsinθ)23=(a3)32
cos43θsin32θ=a2 …….(2)
Now consider secθcosθ=b3
1cosθcosθ=b3
1cos2θcosθ=b3
sin2θcosθ=b3 …….(3)
(sin2θcosθ)23=(b3)22
sin42θcos22θ=b2 ……(4)
Multiply (2) & (4) we get
cos42θsin22θ×sin42θcos22θ=a2×b2
sin22θcos22θ=a2b2 ……(5)
a2+b2=cos42θsin22θ+sin42θcos42θ
=cos2θ+sin2θsin23θ+cos23θ
=1sin23θcos23θ
Consider a2b2(a2+b2)=sin22θcos23θ×1sin22θcos22θ=1.

1112358_1264955_ans_0a7895b296604e34a8ded4a1d584af47.jpeg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios_Tackle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon