If cosecθ−sinθ=a3,secθ−cosθ=b3, then prove that a2b2(a2+b2)=1
Given: cosecθ−sinθ=a3
secθ−cosθ=b3
To show: a2b2(a2+b2)=1
Since, cosecθ−sinθ=a3
⇒1sinθ−sinθ=a3(∵cosecθ=1sinθ)
⇒1−sin2θsinθ=a3
⇒cos2θsinθ=a3.[∵1−sin2θ=cos2θ]
⇒a=cos23θsin13θ
Since, 1cosθ−cosθ=b3(∵secθ=1cosθ)
⇒1−cos2θcosθ=b2
⇒sin2θcosθ=b3[∵1−cos2θ−sin2θ]
⇒b=sin23θcos13θ
Now, a2b2(a2+b2)
=cos43θsin23θ×sin43θcos23θ(cos43θsin23θ×sin43θcos23θ)=cos23θ×sin23θ(cos63θ+sin63θ)sin23θ.cos23θ
=cos2θ+sin2θ=1 Hence proved.