wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosecθsinθ=a3,secθcosθ=b3, then prove that a2b2(a2+b2)=1

Open in App
Solution

Given: cosecθsinθ=a3

secθcosθ=b3

To show: a2b2(a2+b2)=1

Since, cosecθsinθ=a3

1sinθsinθ=a3(cosecθ=1sinθ)

1sin2θsinθ=a3

cos2θsinθ=a3.[1sin2θ=cos2θ]

a=cos23θsin13θ

Since, 1cosθcosθ=b3(secθ=1cosθ)

1cos2θcosθ=b2

sin2θcosθ=b3[1cos2θsin2θ]

b=sin23θcos13θ

Now, a2b2(a2+b2)

=cos43θsin23θ×sin43θcos23θ(cos43θsin23θ×sin43θcos23θ)=cos23θ×sin23θ(cos63θ+sin63θ)sin23θ.cos23θ

=cos2θ+sin2θ=1 Hence proved.


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Right Angled Triangle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon