wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosecθsinθ=m and secθcosθ=n, eliminate θ.

A
(m2n)4/3+(mn2)4/3=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(m4n)2/3+(mn4)2/3=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(m3n)2/3+(mn3)2/3=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(m2n)2/3+(mn2)2/3=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D (m2n)2/3+(mn2)2/3=1
Given cosecθsinθ=m or 1sinθsinθ=m
or 1sin2θsinθ=m or cos2θsinθ=m (i)
Again secθcosθ=n or 1cosθcosθ=n
or 1cos2θcosθ=n or
sin2θcosθ=n (ii)
From Eq. (i), sinθ=cos2θm (iii)
Putting the value of sinθ in Eq. (ii), we get
cos4m2cosθ=n or cos3=m2n
cosθ=(m2n)1/3 or cos2θ=(m2n)2/3 (iv)
From Eq. (iii), sinθ=cos2θm=(m2n)2/3m=m4/3n2/3m=m1/3n2/3=(mn2)1/3
sin2θ=(mn2)2/3 (v)
Adding Eqs. (iv) and (v), we get
(m2n)2/3+(mn2)2/3=cos2θ+sin2θ
or (m2n)2/3+(mn2)2/3=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios_Tackle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon