The correct option is D (m2n)2/3+(mn2)2/3=1
Given cosecθ−sinθ=m or 1sinθ−sinθ=m
or 1−sin2θsinθ=m or cos2θsinθ=m (i)
Again secθ−cosθ=n or 1cosθ−cosθ=n
or 1−cos2θcosθ=n or
sin2θcosθ=n (ii)
From Eq. (i), sinθ=cos2θm (iii)
Putting the value of sinθ in Eq. (ii), we get
cos4m2cosθ=n or cos3=m2n
∴ cosθ=(m2n)1/3 or cos2θ=(m2n)2/3 (iv)
From Eq. (iii), sinθ=cos2θm=(m2n)2/3m=m4/3n2/3m=m1/3n2/3=(mn2)1/3
∴ sin2θ=(mn2)2/3 (v)
Adding Eqs. (iv) and (v), we get
(m2n)2/3+(mn2)2/3=cos2θ+sin2θ
or (m2n)2/3+(mn2)2/3=1