If cosecA+secA=cosecB+secB,provethat:tanA tanB=cotA+B2
We have,
cosecA+secA=cosecB+secBsecA−secB=cosecB−cosecB⇒1cosA−1cosB=1sinB−1sinA⇒cosB−cosAcosA cosB=sinA−sinBsinA sinB⇒tanA tanB=2sin(A−B2)COS(A+B2)−2sin(B−A2)sin(B+A2)⇒tanA tanB=−sin(A−B2)cos(A+B2)−sin(A−B2)sin(A+B2)[∵sin(−θ)=−sinθ]⇒tanA tanB=cot(A+B2)