If cosecθ+cot(θ)=p then prove that cosθ=p2-1p2+1
Prove the given expression
Given,
cosecθ+cot(θ)=p..........(1)
Now,
cosec2(θ)-cot2(θ)=1⇒cosec(θ)-cot(θ)cosec(θ)+cot(θ)=1⇒cosec(θ)-cot(θ)p=1⇒cosec(θ)-cot(θ)=1p...........(2)
Adding (1) and (2) we get
2cosec(θ)=p+1p⇒cosec(θ)=p2+12p⇒sinθ=2pp2+1∵sinA=1cosec(A)⇒cosθ=1-2pp2+12∵cosA=1-sin2A⇒cosθ=p4+2p2+1-4p2p2+12⇒cosθ=p4-2p2+1p2+12⇒cosθ=p2-12p2+12⇒cosθ=p2-1p2+1
Hence proved, cosθ=p2-1p2+1.
If secθ+tanθ=p ,prove that = (p²-1)/(p²+1).