wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosecθ+cot(θ)=p then prove that cosθ=p2-1p2+1


Open in App
Solution

Prove the given expression

Given,

cosecθ+cot(θ)=p..........(1)

Now,

cosec2(θ)-cot2(θ)=1cosec(θ)-cot(θ)cosec(θ)+cot(θ)=1cosec(θ)-cot(θ)p=1cosec(θ)-cot(θ)=1p...........(2)

Adding (1) and (2) we get

2cosec(θ)=p+1pcosec(θ)=p2+12psinθ=2pp2+1sinA=1cosec(A)cosθ=1-2pp2+12cosA=1-sin2Acosθ=p4+2p2+1-4p2p2+12cosθ=p4-2p2+1p2+12cosθ=p2-12p2+12cosθ=p2-1p2+1

Hence proved, cosθ=p2-1p2+1.


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon