If cosx(1+sinx)=|tanx|, then find the number of solutions in [0,2π].
Given:
cosx(1+sinx)=|tanx|
There will be two cases to check the solution of tanx in [0,2π]
Case 1: tanx≥0
cosx(1+sinx)=sinxcosx
⇒ cos2x=sin2x+sinx
⇒ 1-sin2x=sin2x+sinx
⇒2sin2x+sinx–1=0
⇒ sinx=-1,12
⇒ sinx=-1 (not possible)
⇒ sinx=12
⇒ x=π6
Case 2: tanx<0
cosx(1+sinx)=-sinxcosx
⇒ cos2x=-sin2x–sinx
⇒1-sin2x=-sin2x–sinx
⇒ sinx=-1 (Not possible)
∴Only one solution exists x=π6
Find the number of solutions of z2+|z2|=0.