We have : cos x =tan y.
∴cos2x=tan2y=sec2y−1(1)
But cosy=tanz∴secy=cotz
∴ from (1),
cos2x=cot2z−1
∴1+cos2x=cot2z=cos2zsin2z=cos2z(1−cos2z)
But cos z =tan x
∴1+cos2x=tan2x(1−tan2x)∴1+(1−sin2x)=(sin2xcos2x)[1−(sin2xcos2x)]∴2−sin2x=sin2x(cos2x−sin2x)∴2−sin2x=sin2x(1−2sin2x)
∴(2−sin2x)(1−2sin2x)=sin2x∴2sin4x−6sin2x+2=0
∴ by Quadratic Formula,
sinx=[3±√9−4]2=(3±√5)2
But (3+√5)2>1whereassin2x≤1
∴sin2x=(3−√5)2=(6−2√5)4=(√5−1)24∴sinx=(√5−1)2=2sin18∘
We can similarly show that
..sinx=siny=sinz=2sin18∘=(√5−1)2