wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cot2θ+cot(θα)cot(θβ) show that cot2θ=12(cotα+cotβ)

Open in App
Solution

From the given relation on changing to sin and cos , we have
cos2θsin2θ=cos(θα)cos(θβ)sin(θα)cos(θβ)
Apply compo, and divi .
cos2θsin2θcos2θ+sin2θ=cos(θα+θβ)cos(θα+θβ)
Using formula of cos(A±B)
or cos2θ=cos2θ(α+beta)cos(αbeta)[cos(θ)=cosθ]
cos2θcos(αβ)=cos2θcos(α+β),+sin2θsin(α+β)
or \,
cos2θ{cos(αβ)cos(α+β)}=sin2θsin(α+β)
cos2θsin2θ=sinαcosβ+cosαsinβ2sinαcosβ
or cot2θ=12[cotβ+cotα]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon