From the given relation on changing to sin and cos , we have
cos2θsin2θ=cos(θ−α)cos(θ−β)sin(θ−α)cos(θ−β)
Apply compo, and divi .
cos2θ−sin2θcos2θ+sin2θ=cos(θ−α+θ−β)cos(θ−α+θ−β)
Using formula of cos(A±B)
or cos2θ=cos2θ−(α+beta)cos(α−beta)[∵cos(−θ)=cosθ]
∴cos2θcos(α−β)=cos2θcos(α+β),+sin2θsin(α+β)
or \, cos2θ{cos(α−β)−cos(α+β)}=sin2θsin(α+β)
∴cos2θsin2θ=sinαcosβ+cosαsinβ2sinαcosβ
or cot2θ=12[cotβ+cotα]