The correct option is
A equilateralWe have,
cotA+cotB+cotC=√3
Squaring,
cot2A+cot2B+cot2C+2cotAcotC+2cotBcotC+2cotCcotA=3 ...(1)
Now in △ABC. A+B+C=π⇒A+B=π−C
⇒cot(A+B)=cot(π−C)
⇒cotA.cotB−1cotA+cotB=−cotC
⇒cotAcotB+cotBcotC+cotCcotA=1 ...(2)
From (1) and (2) , we have,
cot2A+cot2B+cot2C+2cotAcotB+2cotBcotC+2cotCcotA
=3[cotAcotB+cotBcotC+cotCcotA]
⇒cot2A+cot2B+cot2C−cotAcotB−cotBcotC−cotCcotA=0
⇒12[(cotA−cotB)2+(cotB−cotC)2+(cotC−cotA)2]=0
[∵x2+y2+z2−zx−xy−zy=12{(x−y)2+(y−z)2+(z−x)2}]
⇒(cotA−cotB)2+(cotB−cotC)2+(cotC−cotA)2=0
⇒cotA=cotB=cotC
[Since R.H.S. is zero, each square must be zero]
⇒A=B=C [for triangle]
⇒ Triangle is equilateral.