wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cotA+cotB+cotC=3, then the triangle ABC is

A
equilateral
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
right angled
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
isosceles
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A equilateral
We have, cotA+cotB+cotC=3

Squaring,

cot2A+cot2B+cot2C+2cotAcotC+2cotBcotC+2cotCcotA=3 ...(1)

Now in ABC. A+B+C=πA+B=πC

cot(A+B)=cot(πC)

cotA.cotB1cotA+cotB=cotC

cotAcotB+cotBcotC+cotCcotA=1 ...(2)

From (1) and (2) , we have,

cot2A+cot2B+cot2C+2cotAcotB+2cotBcotC+2cotCcotA

=3[cotAcotB+cotBcotC+cotCcotA]

cot2A+cot2B+cot2CcotAcotBcotBcotCcotCcotA=0

12[(cotAcotB)2+(cotBcotC)2+(cotCcotA)2]=0

[x2+y2+z2zxxyzy=12{(xy)2+(yz)2+(zx)2}]

(cotAcotB)2+(cotBcotC)2+(cotCcotA)2=0

cotA=cotB=cotC

[Since R.H.S. is zero, each square must be zero]

A=B=C [for triangle]

Triangle is equilateral.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon