If (cotα1)(cotα2)...(cotαn)=1 and 0<α1,α2,...,αn<π2, then the maximum value of (cosα1)(cosα2)...(cosαn), is
A
12n/2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
12n
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
12n
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A12n/2 Given: (cotα1)(cotα2)...(cotαn)=1 ⇒(cosα1)(cosα2)...(cosαn)=(sinα1)(sinα2)...(sinαn)
Assuming y=(cosα1)(cosα2)...(cosαn)
Squaring both sides, we get ⇒y2=(cos2α1)(cos2α2)...(cos2αn)⇒y2=cosα1sinα1cosα2sinα2...cosαnsinαn⇒y2=12n[sin2α1sin2α2...sin2αn]
As 0<α1,α2,...,<π2 ⇒0<2α1,2α2,...2α2<π
So, 0<sin2α1sin2α2...sin2αn≤1⇒0<y2≤12n