cotα=12
⇒tanα=2
1+tan2β=sec2β
⇒1+tan2β=259
⇒tan2β=259−1
⇒tan2β=169
⇒tanβ=−43(π2<β<π)
tan(α+β)=tanα+tanβ1−tanαtanβ
=2−431−2×−43=6−43+8
=211
π+π2<α+β<3π2+π
⇒3π2<α+β<5π2
⇒α+β∈(3π2,5π2)
since tan(α+β) is positive . So , α+β∈(2π,5π2) i.e . first quadrant