If cotα+tanα=m and 1cosα−cosα=n, then
Clearly α ≠ 0
cotα+tanα=m
⇒1+tan2α=mtanα⇒sec2α=mtanα (1)and 1cosα−cosα=n⇒sec2α−1=nsecα⇒tan2α=nsecα⇒tan4α=n2sec2α⇒tan4α=n2mtanα [using (1)]⇒tan3α=n2m⇒tanα=(n2m)13and sec2α=m(n2m)13 [using (1)]Now sec2α−tan2α=1⇒ m(n2m)13−(n2m)23=1⇒ m(mn2)13−n(nm2)13=1