We have
Cot B = baseperpendicular=125
so, we draw a right angle ABC , right angle at C such that
Base = BC = 12 units and perpendicular = AC = 5
by pythagoras theorem , we have
AB2=BC2+AC2
⇒AB2=122+52 = 169
⇒AB=√169 = 13
∴sinB=ACAB=513,tanB=ACBC=512,secB=ABBC=1312
Now , LHS = tan2B−sin2B
⇒LHS=(tanB)2−(sinB)2
⇒LHS=(512)2−(513)2=25144−25169
⇒LHS=25(1144−1169)=25(169−144144×169)
⇒LHS=25×25144×169=25×25144×169
⇒LHS=52×52122×133
and RHS = sin4Bsec2B
⇒=(sinB)4(secB)2
⇒=(513)4×(1314)2=54×132134×122
⇒=54132×122=52×52132×122
From (i) and (ii) , we have
tan2B−sin2B=sin4Bsec2B