wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cot B = 125 prove that tan2Bsin2B=sin4Bsec2B

Open in App
Solution

We have
Cot B = baseperpendicular=125
so, we draw a right angle ABC , right angle at C such that
Base = BC = 12 units and perpendicular = AC = 5
by pythagoras theorem , we have
AB2=BC2+AC2
AB2=122+52 = 169
AB=169 = 13
sinB=ACAB=513,tanB=ACBC=512,secB=ABBC=1312
Now , LHS = tan2Bsin2B
LHS=(tanB)2(sinB)2
LHS=(512)2(513)2=2514425169
LHS=25(11441169)=25(169144144×169)
LHS=25×25144×169=25×25144×169
LHS=52×52122×133
and RHS = sin4Bsec2B
=(sinB)4(secB)2
=(513)4×(1314)2=54×132134×122
=54132×122=52×52132×122
From (i) and (ii) , we have
tan2Bsin2B=sin4Bsec2B

1038120_1008440_ans_1dd4d5e8573740708e4be0ade6103b17.png

flag
Suggest Corrections
thumbs-up
4
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratio(sin,cos,tan)
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon