If cot(cos-1x)=sectan-1ab2-a2, then x=
bb2–a2
a2b2–a2
2b2–a2a
2b2–a2b
Step 1. Find the value of x:
Given, cot(cos-1x)=sectan-1ab2-a2
Let θ=tan-1ab2–a2
⇒secθ=bb2–a2
Step 2. Put the value of θ in given equation, we get
cot(cos-1x)=secθ
⇒cot(cos-1x)=bb2–a2
Let ɑ=cot-1bb2–a2
⇒ cotɑ=bb2–a2
⇒cos-1x=ɑ
⇒ x=cosɑ
∴x=bb2–a2
Hence, Option ‘A’ is Correct.
In △ ABC, if cot A, cot B, cot C be in A. P. then a2,b2,c2 are in
If a cot A + b cosec A=p and b cot A +a cosec A =q then p2-q2 is equal to :(A) a2-b2 (B) b2-a2 (C) a2+b2 (D) b-a[A=theta]