If cot-1(x)+tan-1(3)=π2, then x=
13
14
3
4
Find the value of x:
Given, cot-1(x)+tan-1(3)=π2
As we know, tan-1(x)+cot-1(x)=π2
∴x=3
Alternatively,
cot-1(x)+tan-1(3)=π2
tan-1(3)=π2-cot-1(x)
tan-1(3)=tan-1(x)
Hence, Option ‘C’ is Correct.