wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

If (cot θ + tan θ) = m and (sec θ − cos θ) = n, prove that (m2n)2/3 − (mn2)2/3 = 1.

Open in App
Solution

We have (cotθ+tanθ)=m and (secθcosθ)=nNow, m2n=[(cotθ+tanθ)2(secθcosθ)]=1tanθ+tanθ21cosθ-cosθ=(1+tan2θ)2tan2θ×(1cos2θ)cosθ=sec4θtan2θ×sin2θcosθ=sec4θsin2θcos2θ×sin2θcosθ=cos2θ×sec4θcosθ=cosθsec4θ=1secθ×sec4θ=sec3θ(m2n)23=(sec3θ)23=sec2θ

Again, mn2=[(cotθ+tanθ)(secθcosθ)2]=[(1tanθ+tanθ).(1cosθcosθ)2]=(1+tan2θ)tanθ×(1cos2θ)2cos2θ=sec2θtanθ×sin4θcos2θ=sec2θsinθcosθ×sin4θcos2θ=sec2θ×sin3θcosθ=1cos2θ×sec3θcosθ=tan3θ(mn2)23=(tan3θ)23=tan2θNow, (m2n)23(mn2)23=sec2θtan2θ=1=RHSHence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Values of Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon