wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cot θ = 158, show then evaluate (2+2 sinθ)(1-sinθ)(1+cosθ)(2-2cosθ).

Open in App
Solution

Let us consider a right ABC, right angled at B.
Now, we know that cot θ =BasePerpendicular =BCAB = 158.

Using Pythagoras theorem, we have:
AC2 = AB2 + BC2 = (8k)2 + (15k)2
⇒ AC2 = 64k2 + 225k2 = 289k2
⇒ AC = 17k

Finding out the value of sin θ and cos θ using their definitions, we have:
sin θ = ABAC = 8k17k = 817
cos θ = BCAC = 15k17k = 1517

Substituting these values in the given expression, we get:
(2 + 2sin θ)(1 -sin θ)(1 + cos θ)(2 -2cos θ)=(2 + 2×817)(1 - 817)(1 + 1517)(2 - 2×1517)=(2 + 1617)(1-817)(1+1517)(2 -3017)=(34 + 1617)(917)(3217)(34 - 3017)=5017×9173217×417=22564

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon