Given,
cotθ=1√3
tanθ=1cotθ=11√3=√3
From Pythagoras
theorem,
AC2=AB2+BC2
AC2=(√3)2+12
BC2=3+1=4
AC=2
sinθ=oppositeSideHypotenuse=√32
cosθ=AdjacentSideHypotenuse=12
Therefore,
1−cos2θ2−sin2θ=1−(12)22−(√32)2
=(4−1)(8−3)
=35
∴1−cos2θ2−sin2θ=35