tanθ=1cotθ=87
We know that,
tanθ=oppositeSideadjacentSide
From Pythagoras theorem,
Hypotenuse2=OppositeSide2+AdjacentSide2
Hypotenuse2=82+72
Hypotenuse2=64+49=113
Hypotenuse=√113
sinθ=oppositeSideHypotenuse=8√113
cosθ=AdjacentSideHypotenuse=7√113
Solution(i):
(1+sinθ)(1−sinθ)(1+cosθ)(1−cosθ)
We have, a2−b2=(a+b)(a−b)
Similarly,
(1−sin2θ)=(1+sinθ)(1−sinθ)
(1−cos2θ)=(1+cosθ)(1−cosθ)
Therefore,
(1+sinθ)(1−sinθ)(1+cosθ)(1−cosθ)=(1−sin2θ)(1−cos2θ)
=⎛⎝1−(8√113)2⎞⎠⎛⎝1−(7√113)2⎞⎠
=(113−64)(113−49)=4964
Solution(ii):
Given,
cotθ=78
cot2θ=(78)2=4964