wiz-icon
MyQuestionIcon
MyQuestionIcon
9
You visited us 9 times! Enjoying our articles? Unlock Full Access!
Question

If cotθ=78, evaluate :

(i) (1+sinθ)(1sinθ)(1+cosθ)(1cosθ)

(ii) cot2θ

Open in App
Solution

Given,

cotθ=78

tanθ=1cotθ=87

We know that,

tanθ=oppositeSideadjacentSide

From Pythagoras theorem,

Hypotenuse2=OppositeSide2+AdjacentSide2

Hypotenuse2=82+72

Hypotenuse2=64+49=113

Hypotenuse=113

sinθ=oppositeSideHypotenuse=8113

cosθ=AdjacentSideHypotenuse=7113


Solution(i):

(1+sinθ)(1sinθ)(1+cosθ)(1cosθ)

We have, a2b2=(a+b)(ab)

Similarly,

(1sin2θ)=(1+sinθ)(1sinθ)

(1cos2θ)=(1+cosθ)(1cosθ)

Therefore,

(1+sinθ)(1sinθ)(1+cosθ)(1cosθ)=(1sin2θ)(1cos2θ)

=1(8113)21(7113)2

=(11364)(11349)=4964


Solution(ii):

Given,

cotθ=78

cot2θ=(78)2=4964


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon