If cot θ=34, show that √secθ−cosecθsecθ+cosecθ=1√7
cot θ=34, we need to show that √secθ−cosecθsecθ+cosecθ=1√7
cotθ=Adjacent sideOpposite side
Let x be the hypotenuse by applying Pythagoras theorem.
AC2=AB2+BC2x2=42+32x2=16+9x2=25x=√25=5sec θ=ACBC=53cosec θ=ACAB=54
On substitution we get,
√secθ−cosecθsecθ+cosecθ=√53−5453+54=√20−151220+1512=√5123512=√17=1√7
Hence proved