If cot θ=78,evaluate:
(i) (1+sin θ)(1−sin θ)(1+cos θ)(1−cos θ)
(ii) cot2 θ
cotθ=78 i.e., [Baseperpendicular]
Now, by Phythagoras Theorem
H = √64+49
H = √113
∴ sinθ=8√113 and
cosθ=7√113
(i) (1+sin θ)(1−sin θ)(1+cos θ)(1−cos θ)
=12−(8√113)212−(7√113)2 [putting values of sin θ and cos θ and using identitiy a2−b2]
=1−(64113)1−(49113)
=4964
(ii) cot2 θ=(78)2
=4964