If cotθ+tanθ=2cosecθ, then the general value of θ is
nπ±π3
nπ±π6
2nπ±π3
2nπ±π6
Find the value of θ:
Given, cotθ+tanθ=2cosecθ
⇒ cosθsinθ+sinθcosθ=2cosecθ
⇒ cos2θ+sin2θsinθcosθ=2cosecθ
⇒ 2cosecθ=1sinθcosθ ∴sin2A+cos2A=1
⇒2cosecθsinθcosθ=1
⇒ 2cosθ=1 ∵cosecθ=1sinθ
⇒ cosθ=12
⇒ cosθ=cosπ3
∴θ=2nπ±π3
Hence, Option ‘C’ is Correct.
If 1+cotθ=cosecθ, then the general value of θ is