wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If (cotθ+tanθ)=m and (secθcosθ)=n, prove that

(m2n)23(mn2)23=1

Open in App
Solution

m=(cotθ+tanθ)=cosθsinθ+sinθcosθ=sin2θ+cos2θsinθ cosθ=1sinθ cosθ=cosecθ secθn=(secθcosθ)=1cosθcosθ1=1cos2θcosθ=sin2 θ cosθ=tanθ sinθ

LHS=(m2n)23(mn2)23=(m4n2)13(m2n4)13=(cosec4θ sec4θ tan2θ sin2θ)13(cosec2θ sec2θ tan4θ sin4θ)13=(1sin4θ× 1cos4θ× sin2θcos2θ× sin2θ)13(1sin2θ× 1cos2θ× sin4θcos4θ× sin4θ)13=(1cos6θ)13(sin6θcos6θ)13=sec2θtan2θ=1=RHS


flag
Suggest Corrections
thumbs-up
29
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon