If (cotθ+tanθ)=m and (secθ−cosθ)=n, prove that
(m2n)23−(mn2)23=1
m=(cotθ+tanθ)=cosθsinθ+sinθcosθ=sin2θ+cos2θsinθ cosθ=1sinθ cosθ=cosecθ secθn=(secθ−cosθ)=1cosθ−cosθ1=1−cos2θcosθ=sin2 θ cosθ=tanθ sinθ
LHS=(m2n)23−(mn2)23=(m4n2)13−(m2n4)13=(cosec4θ sec4θ tan2θ sin2θ)13−(cosec2θ sec2θ tan4θ sin4θ)13=(1sin4θ× 1cos4θ× sin2θcos2θ× sin2θ)13−(1sin2θ× 1cos2θ× sin4θcos4θ× sin4θ)13=(1cos6θ)13−(sin6θcos6θ)13=sec2θ−tan2θ=1=RHS