If cotθ+tanθ=x and secθ−cosθ=y, then
cotθ+tanθ=x⇒cosθsinθ+sinθcosθ=x⇒cos2θ+sin2θsinθcosθ=x⇒sinθcosθ=1x
secθ−cosθ=y⇒1cosθ−cosθ=y⇒1−cos2θcosθ=y⇒sin2θcosθ=y⇒sinθtanθ=y
Now, (x2y)23−(xy2)23=((1sinθcosθ)2sin2θcosθ)23−(1sinθcosθ(sin2θcosθ)2)23=(sec3θ)23−(tan3θ)23=sec2θ−tan2θ=1
Also, (x2y)13−(xy2)13=((1sinθcosθ)2sin2θcosθ)13−(1sinθcosθ(sin2θcosθ)2)13=(sec3θ)13−(tan3θ)13=secθ−tanθ≠1