The correct option is A True
Let ΔABC in which ∠B=90∘,
According to question,
cotA=ABBC=43
Let AB = 4k and BC = 3k,where k is a positive real number.
By Pythagoras theorem in ΔABC we get.
AC2=AB2+BC2
AC2=(4k)2+(3k)2
AC2=16k2+9k2
AC2=25k2
AC = 5k
tanA=BCAB=34
sinA=BCAC=35
cosA=ABAC=45
L.H.S = (1−tan2A)(1+tan2A)
= 1−(34)21+(34)2
=1−9161+916
=16−916+9=725
R.H.S = cos2A−sin2A
=(45)2−(34)2=1625−925=725
R.H.S = L.H.S
Hence, (1−tan2A)(1+tan2A)=cos2A−sin2A