If Cr=Cr2n+1 then, C0-C12+C22+....+(-1)C22n+12n+1 is equal to?
Cn2n+1-C2n+12n+12
Cn2n
1nCn2n
0
Find the value of C0-C12+C22+....+(-1)C22n+12n+1:
Given, Cr=Cr2n+1
As we know,
(1-x)n=C0-C1x+C2x2-.....+Cnxn
Put x=1
0=C0-C1+C2-.....+Cn
Now,
(1-x)n(1-x)n=C0-C1x+C2x2-.....+CnxnC0-C1x+C2x2-.....+Cnxn
1-x2n=C0-C12x+C22x2-.....+Cn2xn+-12n+1C22n+1
Again put x=1
(C0-C12+C22-.....+Cn2+-12n+1C22n+1)=0
Hence, Option ‘D’ is Correct.
If (1+x)n=C0+C1x+C2x2+........+Cnx2, then
C20+C21+C22+C23+..........+C2n =