If cosec θ=2x and cotθ=2x, find the value of 2(x2−1x2).
Given:
cosec θ=2x, cotθ=2x
⇒(2x)2−(2x)2=1
∴2(x2−1x2)=12
If 3x=secθ,3x=tanθ, then find the value of x2−1x2