Given that, cscθ−cotθ=k
RHS
1−k21+k2
=1−(cscθ−cotθ)21+(cscθ−cotθ)2
=1−(csc2θ+cot2θ−2cscθcotθ)1+(csc2θ+cot2θ−2cscθcotθ)
=1−csc2θ−cot2θ+2cscθcotθ1+csc2θ+cot2θ−2cscθcotθ
=−(csc2θ−1)−cot2θ+2cscθcotθ(1+cot2θ)+csc2θ−2cscθcotθ∴csc2θ−1=cot2θ
=−cot2θ−cot2θ+2cscθcotθcsc2θ+csc2θ−2cscθcotθ∴1+cot2θ=csc2θ
=−2cot2θ+2cscθcotθ2csc2θ−2cscθcotθ
=−2cotθ(cotθ−cscθ)2cscθ(cscθ−cotθ)
=cotθcscθ
=cosθsinθ1sinθ
=cosθ
LHS
Hence proved.