wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cscθcotθ=k, then show that cosθ=1k21+k2.

Open in App
Solution

Given that, cscθcotθ=k

RHS

1k21+k2

=1(cscθcotθ)21+(cscθcotθ)2

=1(csc2θ+cot2θ2cscθcotθ)1+(csc2θ+cot2θ2cscθcotθ)

=1csc2θcot2θ+2cscθcotθ1+csc2θ+cot2θ2cscθcotθ

=(csc2θ1)cot2θ+2cscθcotθ(1+cot2θ)+csc2θ2cscθcotθcsc2θ1=cot2θ

=cot2θcot2θ+2cscθcotθcsc2θ+csc2θ2cscθcotθ1+cot2θ=csc2θ

=2cot2θ+2cscθcotθ2csc2θ2cscθcotθ

=2cotθ(cotθcscθ)2cscθ(cscθcotθ)

=cotθcscθ

=cosθsinθ1sinθ

=cosθ

LHS

Hence proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon