wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cscθ+cotθ=p then prove that cosθ=p21p2+1

Open in App
Solution

Prove that cosθ=p21p2+2

given cosecθ+tanθ=p

square both the side of the given equation

(cosecoθ+cotθ)2=p2

cosec2θ+cot2θ+2cosec.cotθ=p2

cosec2θ+cot2θ+2cosecθ.cotθ+1cosec2θ+cot2θ+2cosecθ.cotθ1=p2+1p21 ( using compound o & dividend rule)

2cosecθ+2cosecθ.cotθ2cot2θ+2cosecθ.cotθ=p2+1p21 (1+cot2θ=cosec2θ)

2csecθ(coseθ+cotθ)2cotθ(cotθ+cosecθ)=p2+1p21

cosecθcotθ=p2+1p21

1sinθ.sinθcoosθ=p2+1p211cosθ=p2+1p21

cosθ=p21p2+1

Hence Proved

flag
Suggest Corrections
thumbs-up
4
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon