wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cscθcotθ=2.cotθ, then prove that cscθ+cotθ=2.cscθ

Open in App
Solution

Given:- cscθcotθ=2cotθ
To prove:- cscθ+cotθ=2cscθ
Proof:-
cscθcotθ=2cotθ
Squaring both sides, we get
csc2t+cot2t2cscθcotθ=2cot2θ
csc2θ+cot2θ+2cscθcotθ=2cot2θ+4cscθcotθ
(cscθ+cotθ)2=(2cscθ+2cotθ)22csc2θ
2cscθ=2(cscθ+cotθ)2(cscθ+cotθ)2
cscθ+cotθ=2cscθ
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon