wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cscθsinθ=a3 4secθcosθ=b3
Prove that a2b2(a2+b2)=1

Open in App
Solution

cosecθsinθ=a3
1sinθsinθ=a3
1sin2θsinθ=a3
cos2θsinθ=a3
(cos2θsinθ)2/3=(a3)2/3
cos4/3θsin2/3θ=a2...(4)
Now
secθcosθ=b3
1cosθcosθ=b3
1cos2θcosθ=b3
sin2θcosθ=b3
(sin2θcosθ)2/3=(b3)2/3
sin4/3θcos2/3θ=b2...(5)
from (4) and (5)
a2×b2=cos4/3θsin2/3θ×sin4/3θcos2/3θ
a2b2=cos2/3θ.sin2/3θ
from (4) and (5)
a2+b2=cos4/3θsin2/3θ+sin4/3θcos2/3θ=cos2θ+sin2θsin2/3θ.cos2/3θ
Now
a2b2(a2+b2)=sin2/3θ.cos2/3θ×1sin2/3θ.cos2/3θ=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Range of Trigonometric Ratios from 0 to 90
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon