wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cscθsinθ=a3 and secθcosθ=b3, prove that a2b2(a2+b2)=1

Open in App
Solution

a3=cos2θsinθ, b3=sin2θcosθ
a2b2(a2+b2)=(cos2θsinθ)23(sin2θcosθ)23[(cos2θsinθ)23+(sin2θcosθ)23]
a2b2(a2+b2)=(sinθcosθ)23×(cos2θ+sin2θ)(cosθsinθ)23
a2b2(a2+b2)=1 (Proved)

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon