3
You visited us
3
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Basic Trigonometric Identities
If θ -sinθ ...
Question
If
csc
θ
−
sin
θ
=
a
3
and
sec
θ
−
cos
θ
=
b
3
, prove that
a
2
b
2
(
a
2
+
b
2
)
=
1
Open in App
Solution
a
3
=
cos
2
θ
sin
θ
,
b
3
=
sin
2
θ
cos
θ
a
2
b
2
(
a
2
+
b
2
)
=
(
cos
2
θ
sin
θ
)
2
3
(
sin
2
θ
cos
θ
)
2
3
[
(
cos
2
θ
sin
θ
)
2
3
+
(
sin
2
θ
cos
θ
)
2
3
]
a
2
b
2
(
a
2
+
b
2
)
=
(
sin
θ
cos
θ
)
2
3
×
(
cos
2
θ
+
sin
2
θ
)
(
cos
θ
sin
θ
)
2
3
a
2
b
2
(
a
2
+
b
2
)
=
1
(
P
r
o
v
e
d
)
Suggest Corrections
2
Similar questions
Q.
If
csc
θ
−
sin
θ
=
a
3
,
sec
θ
−
cos
θ
=
b
3
P.T
a
2
b
2
(
a
2
+
b
2
)
=
1
Q.
Prove the following trigonometric identities.
If cosec θ − sin θ = a
3
, sec θ − cos θ = b
3
, prove that a
2
b
2
(a
2
+ b
2
) = 1