If d1 and d2 are the longest and the shortest distances of the point P(−7,2) from the circle x2+y2−10x−14y−51=0, then the value of d21+d22 is
A
588.0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
588
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
588.00
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
Given circle S≡x2+y2−10x−14y−51=0, P is (−7,2) S1=(−7)2+22−10(−7)−14(2)−51=44>0 ⇒P lies outside the circle.
Centre, C=(−g,−f)=(5,7)
Radius, r=√g2+f2−c=√25+49+51=√125 CP=√122+52=13 ∴d1=CP+r=13+√125 d2=CP−r=13−√125 ∴d21+d22=(13+√125)2+(13−√125)2=2(169+125)=588