The correct option is C D21+D22 is a diagonal matrix
Let D1=diag(a1,a2,a3) and
D2=diag(b1,b2,b3)
Now, D1D2=⎡⎢⎣a1000a2000a3⎤⎥⎦⎡⎢⎣b1000b2000b3⎤⎥⎦
⇒ D1D2=⎡⎢⎣a1b1000a2b2000a3b3⎤⎥⎦
∴D1D2=diag(a1b1,a2b2,a3b3)
which is a diagonal matrix.
⇒ D1D2=diag(b1a1,b2a2,b3a3)
=[diag(b1,b2,b3)][diag(a1,a2,a3)]
=D2D1
∴ D1D2=D2D1
(D1)2=(diag(a1,a2,a3))2
=diag(a21,a22,a23)
(D2)2=diag(b1,b2,b3))2
=diag(b21,b22,b23)
D21+D22=diag(a21+b21,a22+b22,a23+b23)
which is also a diagonal matrix.