If d1,d2,d3 are the diameters of the three escribed circles of a triangle, then d1d2+d2d3+d3d1 is equal to a△2r2, then a is:
Open in App
Solution
From above, d1d2+d2d3+d3d1=4(r1r2+r2r3+r3r1) =[△s−a.△s−b+△s−b△s−c+△s−c△s−a] =4△2[s−c+s−a+s−b](s−a)(s−b)(s−c) =4△2(3s−2s)(s−a)(s−b)(s−c) Multiply Numerator and denominator by s we get =4△2s2s(s−a)(s−b)(s−c) =4△2s2△2 =4s2 =(2s)2 =(a+b+c)2 Also, s=△r ⇒4s2=4△2r2