If D, E and F are the mid points of sides BC, CA and AB respectively of a ΔABC, then using coordinate geometry, prove that
Area of ΔDEF=14(Area ofΔABC)
Let A(x1,y1),B(x2,y2),C(x3,y3) be the vertices of ΔABC. Then, the coordinates of D, E and F are (x2+x32,y2+y32)(x1+x32,y1+y32)and(x1+x22,y1+y22) respectively.
Δ1=Area of ΔABC=12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]
Δ2=Area of ΔDEF=12(x2+x32)(y2+y32−y1+y22)+(x1+x32)(y1+y22−y2+y32)+(x1+x22)(y2+y32−y1+y32)
Δ2=18|(x2+x3)(y3−y2)+(x1+x3)(y1−y3)+(x1+x2)(y2−y1)|
Δ2=18|x1(y2−y3)+x2(y3−y1)+x3(y1−y2)|
Δ2=14(Area of ΔABC)=14Δ1