If D, E and F are the mid-points of sides BC, CA and AB respectively of a ΔABC, then using coordinate geometry prove that Area of ΔDEF=14(AreaofΔABC)
Concept:
Application:
Let A(x1,y1),B(x2,y2),C(x3,y3) be the vertices of ΔABC. Then, the coordinates of D, E and F are x2+x32,(y2+y32),x1+x32,y1+y32) and (x1+x22,y1+y22) respectively.
Δ1=Area of ΔABC=12|x1(y2−y3)+x2(y3−y1)+x3(y1−y2)|
Δ2=Area of ΔDEF=12∣∣(x2+x32)(y1+y32−y1+y22)+(x1+x32)(y1+y22−y2+y32)+(x1+x22)(y2+y32−y1+y32)∣∣
⇒Δ2=18|(x2+x3)(y3−y2)+(x1+x3)(y1−y3)+(x1+x2)(y2−y1)|
⇒Δ2=18|x1(y1)−(y3+y2−y1)+x2(y3−y2+y2+y1)+x3(y3−y2+y1−y3)|
⇒Δ2=18|x1(y2−y3)+x2(y3−y1)+x3(y1−y2)|
⇒Δ2=14 (Area of ΔABC)=14Δ1
Hence, Area of ΔDEF=14 (Area of ΔABC)