We have,
Giventhat:ΔABC
Where D,E,F are mid points of BC,CA and AB respectively.
To prove:-BDEF is a parallelogram
Proof:- In ΔABC,
F is mid point of AB,
D is the midpoint of BC
E is the midpoint of CA
∴FE∥BC⇒∴FE∥BD
∴DE∥AB⇒∴DE∥FB
∴FE∥BDandDE∥FB
So, in BDEF,
Both pairs of opposite sides are parallel,
∴BDEF is a parallelogram.
Hence proved.
Now,
BDEF is a parallelogram
∴ΔDBF≅ΔDEF
ar(ΔDBF)=ar(ΔDEF)......(1)
Similarly, we can prove that,
FDCE is a parallelogram
∴ΔDEC≅ΔDEF
ar(ΔDEC)=ar(ΔDEF)......(2)
Similarly, we can prove that,
AFDE is a parallelogram
∴ΔAFE≅ΔDEF
ar(ΔAFE)=ar(ΔDEF)......(3)
From equation (1), (2), (3) to, and we get,
ar(ΔDBF)=ar(ΔDEC)=ar(ΔAFE)=ar(ΔDEF)
Now,
ar(ΔDBF)+ar(ΔDEC)+ar(ΔAFE)+ar(ΔDEF)=ar(ΔABC)
⇒ar(ΔDEF)+ar(ΔDEF)+ar(ΔDEF)+ar(ΔDEF)=ar(ΔABC)
⇒4ar(ΔDEF)=ar(ΔABC)
⇒ar(ΔDEF)=14ar(ΔABC)
Hence proved.