Let A=(x1,y1),B=(x2,y2) andC=(x3,y3) are the vertices of the ΔABC
Given:
D(−12,52) is the mid-point of BC.
∴x2+x32=−12and y1+y22=52⎡⎢
⎢
⎢⎣∵Mid-point of a line segment having points(x1,y1) and (x2,y2),=(x1+x22,y2+y32)⎤⎥
⎥
⎥⎦⇒x2+x3=−1 ...(i)And y2+y3=5 (ii)As E(7,3) is the mid-point of CA.∴x3+x12=7And y3+y12=3⇒x3+x1=14 ...(iii)And y3+y1=6 ...(iv)Also, F(72,72) is the mid-point of AB.∴x1+x22=72And y1+y22=72⇒x1+x2=7 ...(v)And y1+y2=7 ...(vi)
On adding Eq.(i) (iii) and (v), we get2(x1+x2+x3)=20
⇒x1+x2+x3=10 ...(vii)
On substracting Eqs.(i), (iii) and (v) from Eq. (vii)respectively, we getx1=1,x2=−4,x3=3On adding Eq.(ii) (iv) and (vi),we get2(y1+y2+y3)=18
⇒y1+y2+y3=9. . . .(viii)
On substracting Eqs.(ii), (iv) and (vi) from Eq. (viii)respectively,we gety1=4,y2=3,y3=2
Hence, the vertices of ΔABC are A(11,4),B(−4,3)andC(3,2)
∵Area of ΔABC=Δ=12[x(y2−y3)+x2(y3−y1)+x3(y1−y2)]∴Δ=12[11(3−2)+(−4)(2−4)+3(4−3)]=12[11×1+(−4)(−2)+3(1)]=12[11+3+8]=222=11∴Required area of ΔABC=11