Givendisthehcfof160and24andwehavetofindthevalueofxandysuchthat
d=160x+24y
Alsohavetoshowthattheyarenotunique
NowbyEuclid′sDivisionLemma,HCFdof160and24is
160=24×6+16.......(i)
24=16×1+8........(ii)
16=8×2+0
henceremainder=0
thereforeHCFd=8
Now8=24−16×1.....{from(i)}
8=24−(160−24×6)×1.....{from(ii)}
8=24−160+24×6
8=160×(−1)+24×7......(a)
∴x=−1,y=7
Nowaddingandsubtracting160×24ineqn(a),weget
8=160×(−1)+24×7+160×24−160×24
8=160×(−1+24)+24(7−160)
8=160×23+24(−153)
fromtheaboveweitisclearthatvalueofxandyisnotuniques