Given lines :
L1:x−1=y−22=z−3−3 and L2:x−11=y−1=z−1−2
⇒D.R′s of L1=(a1,b1,c1)=(−1,2,−3) and passes through A(0,2,3)
D.R′s of L2=(a2,b2,c2)=(1,−1,−2) and passes through B(1,0,1)
∴ shortest distance =∣∣
∣∣−−→AB⋅^n|^n|∣∣
∣∣
here ^n=∣∣
∣
∣∣^i^j^ka1b1c1a2b2c2∣∣
∣
∣∣=∣∣
∣
∣∣^i^j^k−12−31−1−2∣∣
∣
∣∣=−7^i−5^j−^k⇒−−→AB=^i−2^j−2^k
∴ shortest distance =∣∣∣−7+10+2√49+25+1∣∣∣=1√3