The correct option is
A −29000Given
Dp=∣∣
∣
∣∣p158p2359p32510∣∣
∣
∣∣
=p(350−225)−15(10p2−9p3)+8(25p2−35p3)
D1=1(350−225)−15(10(1)2−9(1)3)+8(25(1)2−35(1)3)
=125−15.(1)+8(−10)
=125−80−15
=125−95
=30
D2=2(350−225)−15(10(2)2−9(2)3)+8(25(2)2−35(2)3)
=2.(125)−15(40−72)+8(100−280)
=250+15(32)−1440
=730−1440
=−710
D3=3(350−225)−15(10(3)2−9(3)3)+8(25(3)2−35(3)3)
=3.(125)−15(90−243)+8(225−945)
=375+15(153)−8(720)
=375+2,295−5760
=−3090.
D4=4(350−225)−15(10(4)2−9(4)3)+8(25(4)2−35(4)3)
=4.(125)−15(160−576)+8(400−2240)
=500+6240−8.(1840)
=5740−14720
=−8980
D5=5(350−225)−15(10(5)2−9(5)3)+8(25(5)2−35(5)3)
=5(125)−15(250−1125)+8(625−4375)
=625+13125+(−30,000)
=−16250.
∴D1+D2+D3+D4+D5=30−710−3090−8980−16250
=−29000.