The correct option is A π3
Given: l+m+n=0,lm=0,
Since,lm=0
So either, l=0 or m=0
When l=0
0+m+n=0
n=−m
l2+m2+n2=1
0+(m)2+(−m)2=1
2m2=1
m=1√2
So, n=−1√2
Thus (l,m,n)=(0,1√2,−1√2)
Thus (a1,b1,c1)=(0,1,−1)=→b1⋯(i)
When m=0
l+0+n=0
n=−l
l2+02+(−l)2=1
l2+l2=1
2l2=1
l=1√2
So, n=−1√2
Thus (l,m,n)=(1√2,0,−1√2)
Thus, (a2,b2,c2)=(1,0,−1)=→b2⋯(ii)
Angle between two lines: cosθ=→b1.→b2|→b1||→b2|
cosθ=0×1+1×0+(−1)×(−1)√0+1+1√1+0+1
cosθ=12
θ=π3