If Δ1=∣∣ ∣∣xsinθcosθ−sinθ−x1 cosθ1x∣∣ ∣∣ and Δ2=∣∣ ∣∣xsin2θcos2θ−sin2θ−x1 cos2θ1x∣∣ ∣∣ , x≠0 ; then for all θ∈(0,π2) :
the question given below is of matrix :-
If A=[cos2theta sin2theta]
[-sin2theta cos2theta] find A^2
Therefore is ROOT of sin2theta + ROOT of cos2theta must be equal to ROOT of one ?
Basically is sin ROOT theta +cos ROOT theta = 1