The correct option is C 3p+q=0
Δ=∣∣
∣
∣∣−bcb2+bcc2+bca2+ac−acc2+aca2+abb2+ab−ab∣∣
∣
∣∣
Δ=∣∣
∣
∣∣−bcb(b+c)c(c+b)a(a+c)−acc(c+a)a(a+b)b(b+a)−ab∣∣
∣
∣∣
Δ=1abc∣∣
∣
∣∣−abcab(b+c)ac(c+b)ab(a+c)−abcbc(c+a)ac(a+b)bc(b+a)−abc∣∣
∣
∣∣
Δ=∣∣
∣
∣∣−bca(b+c)a(c+b)b(a+c)−acb(c+a)c(a+b)c(b+a)−ab∣∣
∣
∣∣
R1→R1+R2+R3
Δ=∣∣
∣
∣∣ab+bc+acab+bc+acab+bc+acb(a+c)−acb(c+a)c(a+b)c(b+a)−ab∣∣
∣
∣∣
Δ=(ab+bc+ac)∣∣
∣
∣∣111b(a+c)−acb(c+a)c(a+b)c(b+a)−ab∣∣
∣
∣∣
C1→C1−C2,C2→C2−C3
Δ=(ab+bc+ac)∣∣
∣∣001ab+bc+ac−(ab+bc+ac)b(c+a)0ab+bc+ac−ab∣∣
∣∣
Δ=(ab+bc+ac)2∣∣
∣∣0011−1b(c+a)01−ab∣∣
∣∣
Δ=(ab+bc+ac)2 ....(i)
Since, a,b,c are the roots of the equation px3+qx2+rx+s=0
⇒ab+bc+ca=rp and abc=−sp,a+b+c=−qp
Now, given Δ=27
⇒(ab+bc+ac)2=27
⇒ab+bc+ac=3√3
⇒rp=3√3
Also, 2(a2+b2+c2)=(a+b+c)2−2(ab+bc+ac)
⇒4=q2p2−6√3=p28√3=−q2
3p+q=0
Hence, option 'C' is correct.