The correct option is D a
Given: A=90∘
We know, r1=stanA2=Δs−a
⇒s(s−a)Δ=1tanA2⋯(i)
Also, r2+r3=Δs−b+Δs−c
⇒r2+r3=Δ(2s−b−c(s−b)(s−c))
⇒r2+r3=Δ(a(s−b)(s−c)×s(s−a)s(s−a))
⇒r2+r3=Δ(as(s−a)Δ2)=as(s−a)Δ
Using equation (i)
⇒r2+r3=atanA2=a (∵tanA2=tan45∘=1)
Now, r=(s−a)tanA2=s−a
Also, r1=stanA2=s
r1−r=s−(s−a)=a
∴r2+r3=s−r=r1−r=a